Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Bouajjani, A.; Holík, L.; Wu, Z. (Ed.)When omega-regular objectives were first proposed in model-free reinforcement learning (RL) for controlling MDPs, deterministic Rabin automata were used in an attempt to provide a direct translation from their transitions to scalar values. While these translations failed, it has turned out that it is possible to repair them by using good-for-MDPs (GFM) Buechi automata instead. These are nondeterministic Buechi automata with a restricted type of nondeterminism, albeit not as restricted as in good-for-games automata. Indeed, deterministic Rabin automata have a pretty straightforward translation to such GFM automata, which is bi-linear in the number of states and pairs. Interestingly, the same cannot be said for deterministic Streett automata: a translation to nondeterministic Rabin or Buechi automata comes at an exponential cost, even without requiring the target automaton to be good-for-MDPs. Do we have to pay more than that to obtain a good-for-MDPs automaton? The surprising answer is that we have to pay significantly less when we instead expand the good-for-MDPs property to alternating automata: like the nondeterministic GFM automata obtained from deterministic Rabin automata, the alternating good-for-MDPs automata we produce from deterministic Streett automata are bi-linear in the size of the deterministic automaton and its index. They can therefore be exponentially more succinct than the minimal nondeterministic Buechi automaton.more » « less
-
Bouajjani, A; Holík, L.; Wu, Z. (Ed.)This paper presents an optimization based framework to automate system repair against omega-regular properties. In the proposed formalization of optimal repair, the systems are represented as Kripke structures, the properties as omega-regular languages, and the repair space as repair machines—weighted omega-regular transducers equipped with Büchi conditions—that rewrite strings and associate a cost sequence to these rewritings. To translate the resulting cost-sequences to easily interpretable payoffs, we consider several aggregator functions to map cost sequences to numbers—including limit superior, supremum, discounted-sum, and average-sum—to define quantitative cost semantics. The problem of optimal repair, then, is to determine whether traces from a given system can be rewritten to satisfy an omega-regular property when the allowed cost is bounded by a given threshold. We also consider the dual challenge of impair verification that assumes that the rewritings are resolved adversarially under some given cost restriction, and asks to decide if all traces of the system satisfy the specification irrespective of the rewritings. With a negative result to the impair verification problem, we study the problem of designing a minimal mask of the Kripke structure such that the resulting traces satisfy the specifications despite the threshold-bounded impairment. We dub this problem as the mask synthesis problem. This paper presents automata-theoretic solutions to repair synthesis, impair verification, and mask synthesis problem for limit superior, supremum, discounted-sum, and average-sum cost semantics.more » « less
-
Bouajjani, A.; Holík, L.; Wu, Z. (Ed.)The expanding role of reinforcement learning (RL) in safety-critical system design has promoted omega-automata as a way to express learning requirements—often non-Markovian—with greater ease of expression and interpretation than scalar reward signals. When 𝜔-automata were first proposed in model-free RL, deterministic Rabin acceptance conditions were used in an attempt to provide a direct translation from omega-automata to finite state “reward” machines defined over the same automaton structure (a memoryless reward translation). While these initial attempts to provide faithful, memoryless reward translations for Rabin acceptance conditions remained unsuccessful, translations were discovered for other acceptance conditions such as suitable, limit-deterministic Buechi acceptance or more generally, good-for-MDP Buechi acceptance conditions. Yet, the question “whether a memoryless translation of Rabin conditions to scalar rewards exists” remained unresolved. This paper presents an impossibility result implying that any attempt to use Rabin automata directly (without extra memory) for model-free RL is bound to fail. To establish this result, we show a link between a class of automata enabling memoryless reward translation to closure properties of its accepting and rejecting infinity sets, and to the insight that both the property and its complement need to allow for positional strategies for such an approach to work. We believe that such impossibility results will provide foundations for the application of RL to safety-critical systems.more » « less
An official website of the United States government
